An Advanced Catalytic Solvent for Lower Cost Post-combustion CO₂ Capture in a Coal-fired Power Plant Award # DE-FE0012926

Cameron Lippert, Reynolds Frimpong, James Landon, Jesse Thompson and Kunlei Liu

University of Kentucky - Center for Applied Energy Research

http://www.caer.uky.edu/powergen/home.shtml

caer.uky.edu

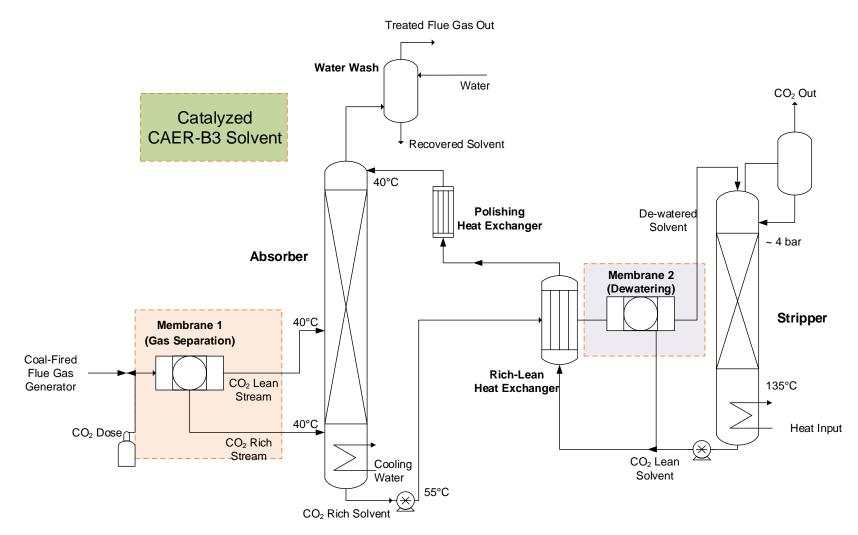
NETL CO₂ Capture Technology Meeting, Pittsburgh, PA, August 8

Project Overview

Project Details

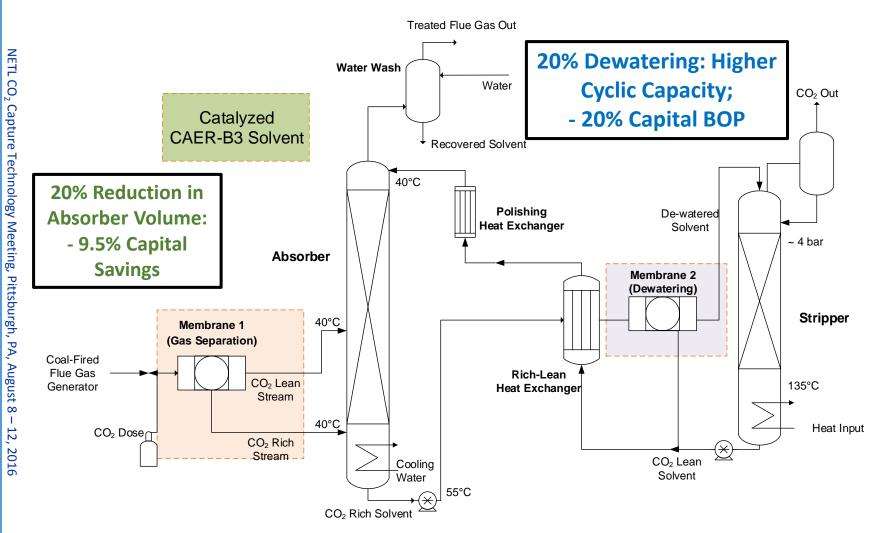
- Benefit from Multiple CAER Technologies: Solvent, Catalyst, Membrane, Process
- Project Cost:
 - DOE share:\$2.97M
 - Cost share:\$742K (\$500K from CMRG)

• Period Performance: 10/1/2013 – 12/30/2016

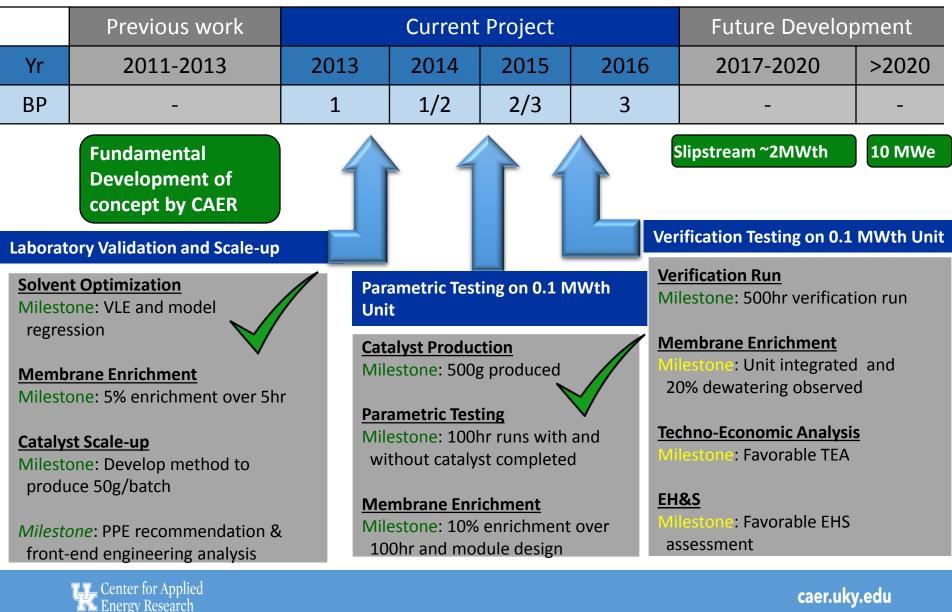

Project Objectives

Develop a pathway to low-cost CO₂ capture via Integration of multiple CAER technologies to verify an advanced catalytic solvent with integrated membrane dewatering for solvent enrichment in our 0.1MWth pilot plant (Proof of concept)

CAER Center for Applied Energy Research	CMRG	SMG	WorleyParsons resources & energy
 Project Management Catalytic Solvent Testing ASPEN Modeling Membrane Synthesis 	 Cost-Share Technical Support 	 PPE Recommendation EH&S analysis 	 Front-End Engineering Techno-Economic Analysis


- 12, 2016

CAER ad-CCS Process


Pre-absorber CO₂ enrichment, catalyst enhanced solvent, and dewatered CAER-B3 used to lower the capital and energy cost of CO₂ capture.

CAER ad-CCS Process

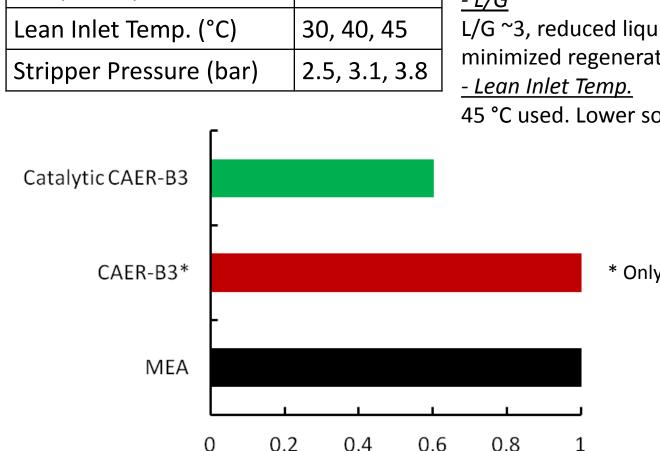
<u>Pre-absorber CO₂ enrichment, catalyst enhanced solvent, and dewatered CAER-B3 used</u> to lower the capital and energy cost of CO₂ capture.

Overall Schedule and Milestones

Parametric Testing Results

Parameter	Range
L/G (wt/wt)	3 – 5.3
Lean Inlet Temp. (°C)	30, 40, 45
Stripper Pressure (bar)	2.5, 3.1, 3.8

- Stripper Pressure


3.1 bar stripper pressure used for better solvent management

<u>- L/G</u>

L/G ~3, reduced liquid load for 90% capture minimized regeneration energy

45 °C used. Lower solvent viscosity

Relative Energy (vs MEA)

BP3 Activities

Task	Task Name	Description
12	Budget Period 3 Project Management and Planning	Review and Update PMP/SOPO
13	Long-term Verification Study in CAER's 0.1 MWth Bench-scale Unit for the Advanced Catalytic Solvent	500 hr Verification Run to Verify Process Stability
14	Large-Scale Membrane Fabrication	Fabrication of Membrane Modules
15	Membrane Integration, Commissioning and Evaluation	Install Module Prior to Stripper and Run for 100 hr
16	Final Techno-Economic Analysis	Process TEA Performed by WP
17	Final EH&S Assessment	Process EH&S Performed by SMG

- BP3 has focused on testing in our 0.1 MWth bench unit
 - 500 hr verification run
 - Degradation/Stability analysis
- Membrane improvement and module design for pilot integration

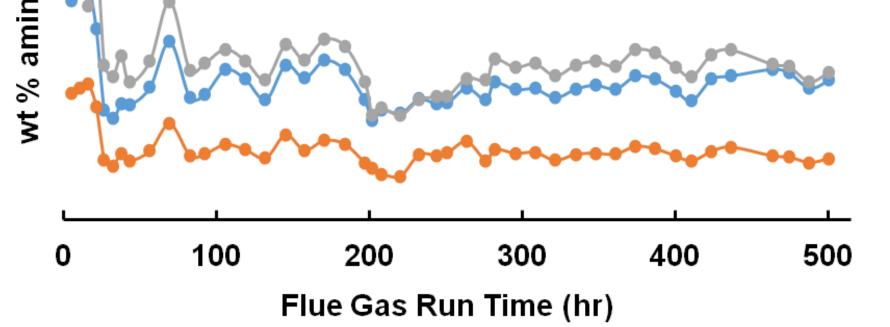
NETL CO₂ Capture Technology Meeting, Pittsburgh, PA, August 8

- 12, 2016

100 Efficiency (%) 80 60 40 Capture \succ Stable operation after initial solvent loading circulation \rightarrow ~50 hr 20 Pre-concentration membrane is stable under run conditions! 0 200 400 600 O Flue Gas Run Time (hr)

Capture Efficiency

- 12, 2016


NETL CO,

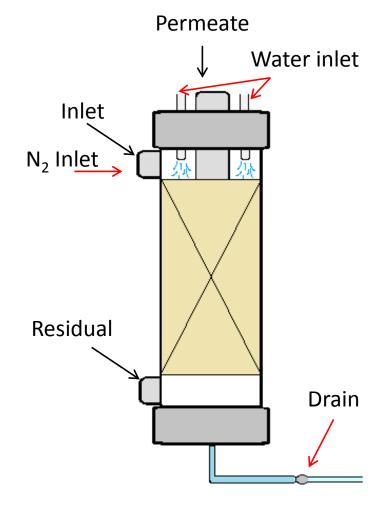
Capture Technology Meeting, Pittsburgh, PA, August 8

Stable Operation & Simple Solvent Makeup

- 1) No Secondary Amines
- 2) No Nitrosamines
- 3) Simple Solvent Makeup

Solvent Cost ~ 2x of 30% MEA

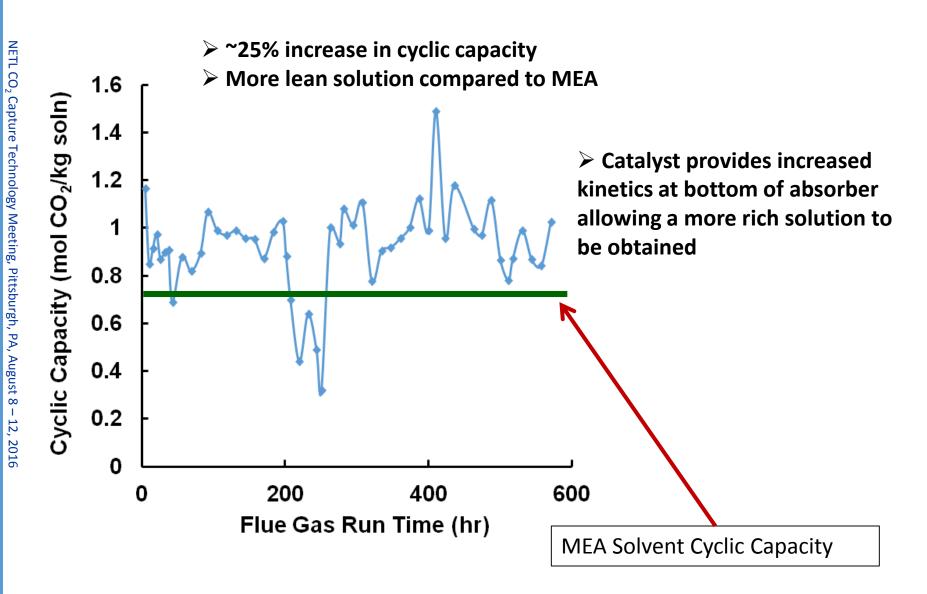
- 12, 2016


NETL CO₂ Capture Technology Meeting, Pittsburgh, PA, August 8

Membrane is Durable

Commercial Membrane

In-line membrane cleaning



CAER-adCCS Energy Cost is Low 35% less Energy 100 (%) (vs MEA 0.8 80 JCV <u>e</u> 60 0.6 Energy Avg. Relative Energy Ш 40 0.4 ď Relativ 20 0.2 Captu Capture Efficiency **Energy Relative to MEA** 0 400 600 200

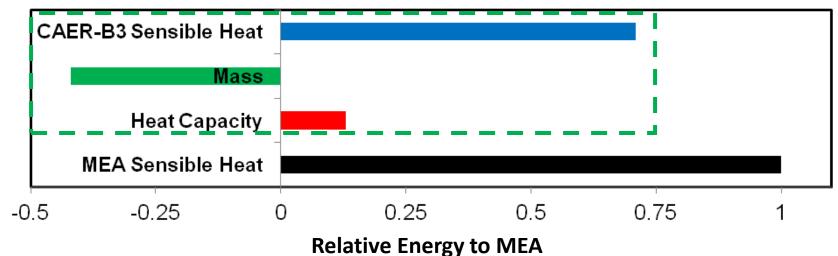
Flue Gas Run Time (hr)

NETL 8 Technology Meeting, Pittsburgh, PA, August 8 – 12, 2016

Improved Cyclic Capacity

Energy Savings: Low ΔH (10%)

 $E_{sys} = E_{\Delta H} + E_{S} + E_{Vap}$


NETL CO₂ Capture Technology Meeting, Pittsburgh, PA, August 8 - 12, 2016

Energy Savings: Low Sensible Heat (30%)

$$E_{sys} = E_{\Delta H} + E_{S} + E_{Vap}$$

	L/G wt/wt	Liquid Load m ³ /(m ² *h)	Absorber Log Mean Temp. (°C)	Stripper Pressure (bar)	Stripper Bottom Temp. (°C)	Capture Efficiency (%)
CAER-B3	3.0	10.8	49	3.1	139	90
MEA	5.3	19	48	3.1	139	90

 $Q_s = mCp\Delta T$

Degradation and Emissions

Analytes	Degradation Rates	Notes
Flue Gas HSS	41 ppm/hr	Mainly from SO2 at 39 ppm/hr
Oxidative Degradation	8.8 ppm/hr	Primarily as Formate, similar to previous solvent campaigns
Thermal Degradation	6.9 ppm/hr	Comparable to previous solvent campaigns with high reboiler temperatures
Metals: Fe, Ni, Cr	81, 5, 2 ppb/hr respectively	Some corrosion of pumps likely resulting in the observed accumulation of Fe, Ni and Cr
Solvent Emissions	5 – 38 ppmV range	Mainly as aerosols
Ammonia Emissions	11-120 ppmV range	Some solvent oxidation observed, likely due to Fe in solvent

NETL CO₂ Capture Technology Meeting, Pittsburgh, PA, August 8

- 12, 2016

NETL CO₂ Capture Technology Meeting, Pittsburgh, PA, August 8 - 12, 2016

Zeolite Dewatering Membrane

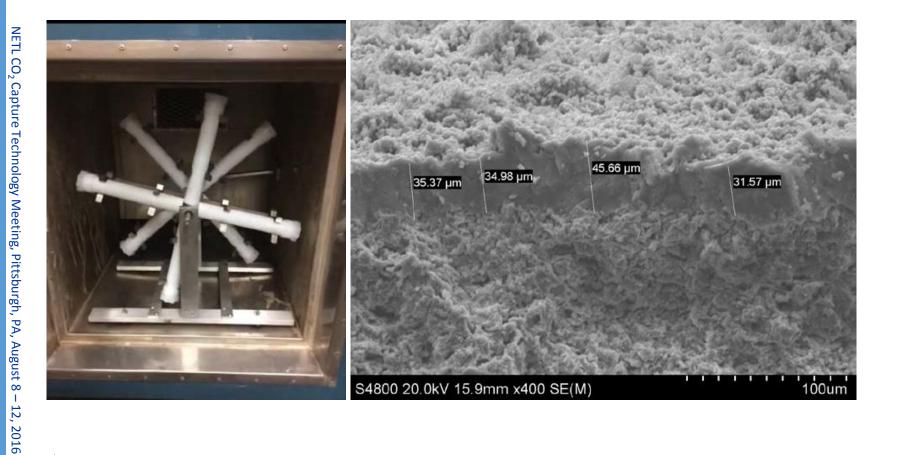
Energy Comparison

- Liquid CO₂ Enrichment 20% Dewatering
- High CO₂ Partial Pressure
- Reduce Reboiler Duty


Membrane	Pressure (psi)	Energy (kW/(ton/hr))
Polymer	1200	2.7
CAER	150	0.28

caer.uky.edu

- 12, 2016


NETL CO₂ Capture Technology Meeting, Pittsburgh, PA, August 8

Assembled Membrane Module

Stable fluxes and high selectivity (>10, rejection rate >90%) are achieved with the new "carousel" method for zeolite membrane production.

Zeolite Membrane Scale-up

 \geq Eight membranes can be synthesized every 3 days with similar zeolite surface layers (approximately 30 µm) to the previous autoclave process.

Finalized Dewatering Membrane Module

• Five membrane modules composed of six 18 cm Y zeolitecoated mullite membranes.

 Three reactors are in series to reach ~15-25% dewatering while two separation trains are in parallel to increase the total volume of dewatered solvent.

• In-line particle filters are used to protect the zeolite membranes from ash contaminants.

• Yield ~7% energy savings in stripper

Project Completion Plan

Budget Period 3 Task Plan

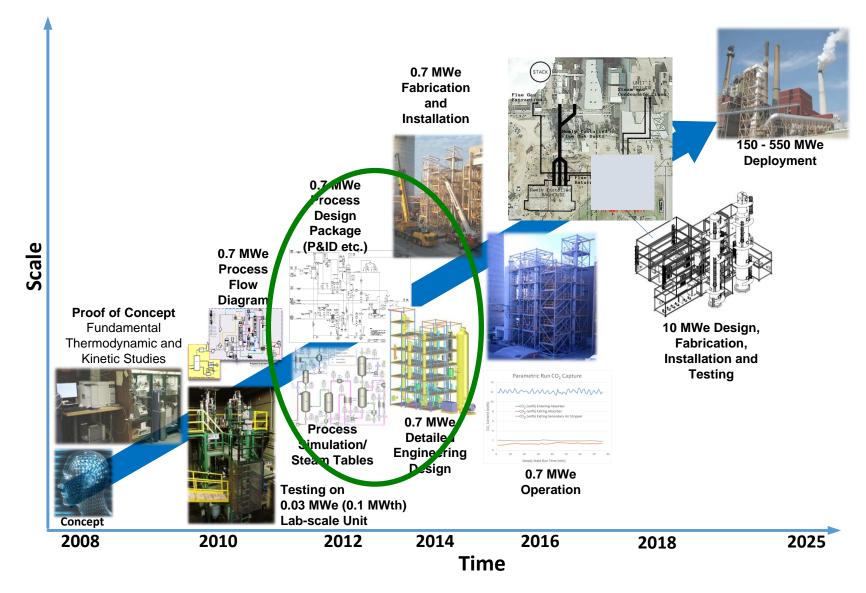
- 100hr dewatering membrane verification run
- Final EH&S Report
- Final TEA

Project Success Criteria

- A 500 h long-term verification study with coal derived flue gas completed on the 0.1 MWth bench-scale test facility using carbon loading enrichment technique and the CAER catalyzed, advanced amine solvent verifies the long term stability of CAER amine and catalyst to thermal compression (> 3 bar) conditions and to flue gas contaminants from coal combustion.
- Verification testing of the CAER process using the catalyzed advanced amine solvent, dewatering and gas preconcentration membranes together confirm stripping energy reduced by at least 25% when compared to 30 wt% MEA.

NETL CO₂ Capture Technology Meeting, Pittsburgh, PA, August 8

T


12

2016

NETL CO₂ Capture Technology Meeting, Pittsburgh, PA, August 8 T 12, 2016

caer.uky.edu

Technology Development Pathway

Acknowledgements

The work presented here was made possible through funding by:

- The U.S. DOE/ National Energy Technology Laboratory
- Carbon Management Research Group: Duke Energy, EPRI, LGE&KU, DEDI, AEP

A CONTRACT OF A	CERER Center for Applied Energy Research	CMRG	SMG	WorleyParsons
 José Figueroa Lynn Brickett 	 Kunlei Liu Moushumi Sarma Rafael Franca Heather Nikolic Jesse Thompson Lisa Richburg Naser Matin Brad Irvin Saloni Bhatnagar Leland Widger Megan Combs Zhen Fan 	 David Link Doug Durst Michael Kennedy Abhoyjit Bhown Curtis Sharp 	• Clayton Whitney • Sarah Carty	• Mike Bartone • Vlad Vaysman

caer.uky.edu